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Abstract - Discrete wavelet transform (DWT) represents
image as a sum of wavelet functions (wavelets) on different
resolution levels. Basis for wavelet transform can be
composed of any function that satisfies requirements of
multiresolution analysis. It means that there exists a large
selection of wavelet families depending on the choice of
wavelet function. The choice of wavelet family depends on the
application. In image compression application this choice
depends on image content. This paper will provide
fundamentals of wavelet based image compression.
The options for wavelet image representations are tested.
The results of image quality measurements for different
wavelet functions, image contents, compression ratios and
resolutions are given.

1. INTRODUCTION

Discrete Wavelet Transform (DWT) can be efficiently
used in image coding applications because of their data
reduction capabilities. Unlike the case of Discrete Cosine
Transform (DCT) which basis is composed of cosine
functions, basis of DWT can be composed of any function
(wavelet) that satisfies requirements of multiresolution
analysis, [1]. From that follows that there exist very wide
choice of functions for basis of DWT. The choice of
wavelet depends on contents and resolution of image.
DWT have some properties, which makes it better choice
for image compression than DCT, especially for images on
higher resolutions. The entire image is transformed and
compressed as a single data object rather than block by
block (as in DCT based system) allowing for a uniform
distribution of compression error across the entire image.
DWT have higher decorrelation and energy compression
efficiency so DWT can provide better image quality on
higher compression ratios. Localization of wavelet
functions, both in time and frequency, gives DWT
potentiality for good representation of images with fewer
coefficients. DWT represents image on different resolution
level. Multiresolution representation is well suited to the
properties of Human Visual System (HVS) which gives the
possibility for designing different quantizer for each level.

II. BASICS OF WAVELET TRANSFORM
A. Multiresolution Analysis

A function or signal can be viewed as compositions of
smooth background and details on top of it. The distinction
between the smooth background and details is determined
by resolution, that is by the scale below which the details
of the signal can not be discerned.

Considering a function f{#) and labeling the resolution
level by j the scale below which all fluctuations on that
resolution is ignored is J/7. The function that
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approximates f?) is fi(t). At the next resolution level j+/
the details denoted by d() are included in function f.,(¥),
Si+1(= [+ dy(t). This procedure can be repeated several
times. The function f{?) can be viewed as

fO=1,+34, i

Similarly, the space of square integrable functions L(R)
can be viewed as compositions of subspaces {#} and
subspace V. {W,} contains details di(t). The subspace V;
contains fi(t)approximation of function f{#) on resolution
level j.

Requirements of multiresolution analysis are:

1. Subspace V; must be contained in all subspaces on
higher resolutions (2).

cVicVye.. c’R) )

2. All square integrable functions must be included at the
finest resolution level (3) and only zero function on
the coarsest level (4).

U, ¥V, =L*(R) 3)
~, vV, ={0} 4

3. All the spaces {V)} are scaled versions of the central
space V. If f?) is in space V; and it contains no details
on scales smaller than //2, then function f(2t) contains
no details on scales smaller than 7/2* and it is from
space V4 (5).

fOV; S f20 eVy )
4. If f1r) €V, so do its translates by integer &, {f{t-k)} (6).
J) Vo = fit-k) €y (6)

5. There exist a function ¢), called scaling function,
such that {gt-k)} is an orthonormal basis of V.

B. Scaling Function
The subspaces {V;} form a nested sequence that provides

successively better approximation to L°. Scaling function
generates basis functions for each subspace 1'}:

Be0)=2" §(2 1K), Q)
where coefficient 2 denotes scale of scaling function and

k translation by integer in time. Since V) < V), any
function from subspace V; can be represented with basis
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functions from V. Dilatation equation (8) shows how are
related scaling functions, on two successful neighboring
resolutions.

#(O) =2 hp(2t k) ®

Using the fact that ()} are orthonormal, the
coefficients {4} can be obtained by computing the inner
product:

h =2 [¢Op(2 ~k)dr. ©)

. These coefficients are called coefficients of lowpass filter
or short lowpass filter. Fig. 1 shows example of 4-tap
Daubechies scaling function.
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Fig. 1. Example of 4-tap Daubechies scaling function
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C. Mother Wavelet

From definition of multiresolution analysis follows that
entire space of square integrable functions L°(R) can be
decomposed into orthogonal subspaces (W} each
containing information about details at given resolution.
Detail space W} has orthonormal basis { y(®)} where:

() =27 (2 k) (10)

So, L*(R) has an orthonormal basis {yu(®}; called
wavelet basis. Each wavelet w(® is generated by
translating and dilating of function w(?) called mother
wavelet.

Since {w(t-k)} is in W, and Wy <V, w@® can be
represented as superposition of basis functions for V.

p(O)=2Y g,8(2t k) an

Wavelet equation (11) shows how are related mother
wavelet and scaling function at the next finer level. Using
the fact that {¢@,(t)} are orthonormal, the coefficients {g}
can be obtained by computing the inner product:

g =2 Tz//(t)¢(21 ~k)dt (12)

These coefficients are called coefficients of highpass
filter or short highpass filter. Coefficients of highpass filter
can be calculated from coefficients of lowpass filter using
this equation:

a=C1'hi. (13)

100

Fig. 2 shows example of 4-tap Daubechies wavelet
function.
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Fig. 2. Example of 4-tap Daubechies wavelet function
D. Discreet Wavelet Transform

Supposing that is input function f{#) only known to the
certain resolution level j and that details on the scales
smaller than 27 is ignored the approximation of f{) on
level j is determined by equation:

VAGES WG a4
k
where @y(?) is a scaling function on resolution level j and
translated by integer k and £/ are coefficients given by:

Ji = [ 1,08, )t (15)

The function fi#) can be uniquely represented by the
coefficients {f,-k}- Furthermore, f(#) can be decomposed

into a smooth part f;,(#) on the next coarser level j-/ and
details d;.,(¥)

fj(') = .fj—l(t)+dj—l(t) =

=Y 7O+ X dl Ny, O (16)

where gi(?) is a wavelet function on resolution level j and
translated by integer k and 4/ are coefficients given by:
df = £,y , ()dr an

Using definition of multiresolution analysis, (9) and (12)
expressions for {/j*-l} and {d;f—'} can be derived in terms of

{r}: ,
1 =Y S 18)
and

di”' =3 g 0t/ (19)
!

where / denotes resolution level.

Smooth part of fit) can be further decomposed to
smooth part and details on resolution level j-2.
Decomposition of input function can be repeated until the
coarsest level j, is reached.
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Equation (20) shows decomposition of input function
fi(t) to average part or smooth background and details on
Jj-1-jo resolution levels.
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E. Two dimensional Discrete Wavelet Transform

Discrete Wavelet Transform for two-dimensional signal,
or in our case images, can be derived from one-
dimensional DWT. Easiest way for obtaining scaling and
wavelet function for two-dimensions is by multiplying two
one-dimensional functions.

Scaling function for 2-D DWT can be obtained by
multiplying two 1-D scaling functions (21). Generally
different scaling functions can be used for each direction
but in practice those functions are in most cases the same.

Hx.3)=d(x) Hy)

Wavelet functions for two-dimension DWT can be
obtained by multiplying two wavelet functions or wavelet
and scaling function for one-dimensional analysis. From
that follows that for 2-D case there exist three wavelet
functions that analyses details in horizontal (22), vertical
(23) and diagonal (24) direction.

J+ YLl ® o)

@D

VP oy)=wi) dy) 22)
W xy)=gx) y) 23)
V" (6, 3)= i) wy) (24)

II. MAGE COMPRESSION BASED ON DWT

Choice of wavelet function is crucial for coding
performance in image compression. This choice should be
adjusted to image content. The coding performance for
images with high spectral activity is fairly insensitive to
choice of wavelet basis (for example test image Baboon),
{2]. On the other hand, coding performance for images
with moderate spectral activity (for example test image
"Lena") are more sensitive to choice of wavelet basis.
From that follow, that the best way for choosing of wavelet
function is to select optimal basis for images with
moderate spectral activity. This wavelet function will give
satisfying results for other types of images.

In our experiment four types of wavelet families are
examined: Haar (HW), Daubechies Least Asymmetric
(DW), Coiflet (CW), and Biorthogonal Spline (BW).
Daubechies and Coiflet wavelets are families of orthogonal
wavelets that are compactly supported. Compactly
supported wavelets correspond to finite impulse response
(FIR) filters and thus lead to efficient implementations, [8).
A major disadvantage of these wavelets is their
asymmetry, which can cause artifacts at borders of the
wavelet subbands. Syminetry in wavelets can be obtained
only if we are willing to give up either compact support or
orthogonality of wavelet (except for Haar wavelet, which
is orthogonal, compactly supported and symmetric).
The example of noncompactly supported but symmetric
orthogonal wavelet is Meyer wavelet family. The use of
Meyer wavelets adds computational burden and can not
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provide efficient implementation. If we want both
symmetry and compact support in wavelets, we should
relax the orthogonality condition and allow nonorthogonal
wavelet functions. The example is the family of
biorthogonal spline wavelets that contains compactly
supported and symmetric wavelets.

a)HW b) bW

c)CW

d) BW

Fig. 3. Comparison of wavelet functions for image "Lena" (256x256) and
compression ratio 100:1

Each family can be parameterized by an integer that is
proportional to the length of wavelet filter. For compactly
supported wavelets, the length of a wavelet filter is related
to the degree of smoothness of the wavelet and can affect
the coding performance. In our examples the length of
wavelet filter is determined by number of taps. Wavelet
functions are chosen according to coding performance for
image "Lena" with dimensions of 256x256 pixels.
The image is coded using different wavelet functions from
each wavelet family. Image quality is measured using Peak
Signal to Noise Ratio (PSNR) which is defined as:

2" -1

PSNR =20log @25)
RMS

Root Mean Square Error (RMS) represents difference
between original image x; and reconstructed image x';:

RMS:J%IZ):;(% )

Fig. 3 shows the compression results for wavelet functions
that are the best suited to image "Lena" from each wavelet
family (2 taps and 8 decompositions for HW, 10 taps and 5
decompositions for DW, 12 taps and 4 decompositions for
CW, 4 tap and 6 decompositions for BW). The PSNR
results for different wavelet functions and compression
ratios are shown in Table I. According to PSNR
measurements, the results for higher compression ratios are
comparable for DW, CW and BW, but the visual quality is
best for BW. :

(26)



TABLE 1
PSNR IN (dB) FOR DIFFERENT WAVELET FUNCTIONS AND
COMPRESSION RATIOS (TEST IMAGE "LENA")

Compression ratio
Wavelets
5:1 15:1 50:1 100:1
HW 36.01 28.75 2391 21.86
10-tap DW 37.04 29.33 24.46 22.19
12-tap CW 37.40 29.73 24.63 22.43
4-tap BW 37.99 29.99 24.59 22.33

To examine the influence of the length of a wavelet
filter to image quality, we changed the number of taps
(2, 10 and 20) in Daubechies Least Asymmetric Wavelet.
PSNR values for 2 and 10 taps are contained in Table 1
(Haar wavelet can be seen as Daubechies wavelet with 2
taps). PSNR values for 20 taps and compression ratios 5:1,
15:1, 50:1 and 100:1 are 36.97 dB, 29.01 dB, 24.56 dB and
22.28 dB respectively. Larger number of taps does not
imply better PSNR and visual picture quality. Number of
decompositions in these examples is chosen to be optimal
for corresponding wavelet (8 for 2-tap DW, 5 for 10-tap
DW and 4 for 20-tap DW).

a) horizontal b) vertical

Two-dimensional DWT decompose input matrix of
image data with dimensions of NxN, to matrix that
represent image on the next coarser level, called average
part and three matrices’ of details for each horizontal,
vertical and diagonal direction. Those new matrices have
dimensions of N/2xN/2. On the next step average part can
be considered as an input matrix and procedure of
decomposition can be repeated. The number of
decompositions is limited by dimensions of original image
that is by the dimensions of average part of transformed
image that must contain at least one coefficient.

Fig. 4 shows decomposition of image “Lena” with
dimensions of 256x256 pixels with 8 bit per pixel to
average part and details on each resolution. In this example
is used 10-tap Daubechies least asymmetric wavelets with
four decompositions. The 4™ resolution level denotes the
coarsest level. This figure shows that matrices on higher
resolution levels contain information of smaller details.

The quality of compressed image depends on number of
decompositions because HVS is less sensitive to removal
of smaller details. Fig. 5 shows comparison of
reconstructed image “Lena” (256x256 pixels) for 1, 2, 3
and 4 decompositions with compression ratio 50:1. It can
be seen that image quality is better for higher number of
decompositions.

Average part

¢) diagonal

Details on 4™ resolution level

Details on 3" resolution level

Details on 2™ resolution level

Details on 1% resolution level

Fig. 4. Decomposition of image “Lena” using 10-tap Daubechies least asymmetric wavelet and four decompositions
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(2) PSNR = 8.40 dB (b) PSNR = 11.76 dB

(c) PSNR = 2339 dB

(d) PSNR =24.40 dB

Fig. 5. Reconstructed image Lena: (a) 1, (b) 2, (¢) 3, and (d) 4
decompositions (compression ratio is 50:1)

ITII. COMPRESSION RESULTS

To achieve higher compression ratios wavelet
coefficients can be requantized. Requantization can be
applied, by uniform or non-uniform quantization. The fact
that DWT represents image on different resolutions gives
possibility for designing separate quantizers for each
resolution level. The design of each quantizer can be
determined from statistics of wavelet coefficients along the
different scales [3]. Allocation of bits for each scale can be
obtained according to characteristics of Human Visual
System, as in [4].

After requantization coding of requantized coefficients
can be applied. The aim of coder-decoder pair, or codec is
lossles compression of quantized coefficients. The design
of codec is usually compromise between requirements for
execution speed, available bandwidth and quality of
reconstructed image. Run-length coding of zeroes is
appropriate for applications that require fast execution.
Run-length coded values can be encoded using fixed-
length or variable-length codewords. For applications that
require best possible quality of reconstructed image, the
techniques such as zerotree encoding is better choice, [6].
Zerotree coder gives better image quality than zero run-
length coder but the execution time is several times longer.

After decomposing image and representing it with
wavelet coefficients, compression can be performed by
ignoring all coefficients below some threshold.
The different thresholds can be set for each resolution level
and also for each decomposition direction: horizontal,
vertical or diagonal. After that, coefficients can be
requantized. Each resolution has different meaning for
subjective quality of reconstructed image. Consequently
the best method for requantization is to design different
quantizer for each resolution [4].

Comparison of PSNR of image "Lena" for standard
JPEG [5] and DWT using 4-tap BW is shown in Fig. 6.
Compression results for JPEG are taken from [9]
For compression ratios below 20:1 JPEG gives similar
results as DWT. For higher compression ratios (higher than
30:1) quality of images compressed using. DWT slowly
degrades while quality of standard JPEG compressed
images deteriorates rapidly. The compression performance
of DWT is superior to that of JPEG and the visual quality
of reconstructed images is better even if the PSNR are the
same. There are noticeable blocking artifacts in the JPEG
images. Fig. 7 shows visual quality for JPEG and DWT
compressed images with the same PSNR (26 dB).
The comparison demonstrates that even for relatively high
compression ratios (>50:1) DWT based compression gives
good results according to both visual quality and PSNR
(see Table I).

PSNR 40 - —&— JPEG-Lena
(dB) i —8—DWT-Lena
35 4 —t—DWT-Zebra
B —¥—DWT-Baboon
30 4
25 4
20 o
1 5 L] L] L L] ¥ L] L] L] 1 1

0 5 10 15 20 25 30 35 40 45 50

compression ratio

Fig. 6. Comparison of standard JPEG and DWT (4-tap BW) compression

©) (d)

Fig. 7.Compression results of image "Lena" using (a) JPEG, (b) DW, (c)
CW, (d) BW; (PSNR = 26 dB)

No single image compression algorithm can be expected
to work well for all classes of images. Quality of
reconstructed image depends on the content of image
[10, 11]. Therefore Fig. 6 contains PSNR values for test
images Zebra and Baboon compressed using 4-tap BW.
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PSNR of "Lena" image is through all compression ratios
for about 3 dB higher than PSNR for "Zebra". For other
wavelets these relations can be changed. Visual image
quality for compression ratios of 5:1 and 50:1 applied to
the images Baboon and Zebra are compared in Fig. 8.

(c) PSNR =28.23 dB

(d) PSNR = 17.55 dB

Fig. 8. Comparison of reconstructed images Baboon and Zebra
compressed using 4-tap BW and compression ratios of 5:1and 50:1

(c) 512x512 (PSNR = 21.70 dB)

(d) 1024x1024 (PSNR =23.93 dB)

Fig. 9. Reconstructed image “River” with dimensions 256x256,
512x512 and 1024x1024 pixels for compression ratio 1:50
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Quality of reconstructed image depends on dimensions
of original image. This follows from fact that DWT gives
better results for higher number of decompositions.
For larger images more decompositions can be provided.
Comparison of visual image quality and PSNR for image
“River”, with dimensions 256x256, 512x512 and
1024x 1024 pixels, compression ratio of 50:1 and 4-tap BW
is shown in Fig. 9. Visual quality of larger images is much
better than quality of small images while PSNR shows the
similar values for all three resolutions.

IV. CONCLUSION

In this article we have provided the basics of wavelet
transform and comparisons of different wavelets used in
image compression system. Although JPEG processing
speed and compression ratio are good there are noticeable
blocking artifact at high compression ratios. However,
there are no blocking effects at all in reconstructed images
by wavelet-based methods. Our very simple and fast
compression scheme based on DWT provides better results
than standard JPEG especially for higher compression
ratios. Researches of possibilities of wavelets for image
compression has made great progress in the last five years
so that compression schemes based on wavelets have
already begun to appear in some software and hardware
systems.
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